Large-Scale Support Vector Machine Classification Algorithm Based on Granulation Mechanism
نویسندگان
چکیده
Support vector machine classification algorithm has been deeply studied in the field of intelligent information processing with its solid theoretical foundation and excellent performance, it widely used real life, such as face recognition, text classification, sentiment analysis, spam filtering, etc. The time complexity classic support is proportional to square data size, this poses a serious challenge calculability, effectiveness efficiency for massive data. In paper, large-scale based on granulation mechanism proposed from fusion information. A firstly constructed using binary tree label information, well core sample set obtained by combining instance selection method, then remaining samples construct multiple weak classifiers; finally draw idea granularity generate strong classifier. experimental results standard verify algorithm, provides new research ideas methods
منابع مشابه
Efficient Kernel Approximation for Large-Scale Support Vector Machine Classification
Training support vector machines (SVMs) with nonlinear kernel functions on large-scale data are usually very timeconsuming. In contrast, there exist faster solvers to train the linear SVM. We propose a technique which sufficiently approximates the infinite-dimensional implicit feature mapping of the Gaussian kernel function by a low-dimensional feature mapping. By explicitly mapping data to the...
متن کاملA New Play-off Approach in League Championship Algorithm for Solving Large-Scale Support Vector Machine Problems
There are many numerous methods for solving large-scale problems in which some of them are very flexible and efficient in both linear and non-linear cases. League championship algorithm is such algorithm which may be used in the mentioned problems. In the current paper, a new play-off approach will be adapted on league championship algorithm for solving large-scale problems. The proposed algori...
متن کاملModeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification
Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...
متن کاملProbabilistic Classification Vector Machine at large scale
Probabilistic kernel classifiers are effective approaches to solve classification problems but only few of them can be applied to indefinite kernels as typically observed in life science problems and are often limited to rather small scale problems. We provide a novel batch formulation of the Probabilistic Classification Vector Machine for large scale metric and non-metric data.
متن کاملHeart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in transdisciplinary engineering
سال: 2022
ISSN: ['2352-751X', '2352-7528']
DOI: https://doi.org/10.3233/atde220030